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 A B S T R A C T

Trajectory tracking serves as a pivotal performance metric for mobile robot systems, and is crucial for 
improving the efficiency of robots. The intricate kinematic and dynamic properties of robot systems pose 
substantial challenges in achieving accurate modeling and effective control, which remain pressing issues 
within the current research domain. This study focuses on wheeled mobile robot, relying on the deep 
Koopman operator theory, combined with the extended state observer (ESO) and the adaptive predictive 
time domain self-triggered model predictive control (APST-MPC) method, to propose a data-driven solution 
for the trajectory tracking control issue of wheeled mobile robot under uncertain model parameters. Firstly, 
the dynamic model of the mobile robot is constructed by the deep Koopman operator method. Secondly, to 
counteract operational disturbances encountered by the robot, an ESO is designed for disturbance estimation 
and subsequent compensation within the controller. Thirdly, to reduce the computational load, APST-MPC is 
employed to enhance the trajectory tracking control of wheeled mobile robot. Ultimately, the efficacy of the 
proposed trajectory tracking controller is confirmed through simulation experiments. The simulation outcomes 
confirm the deep Koopman operator theory’s efficacy in establishing a robot model with considerable accuracy, 
the tracking error of the robot is reduced by 46.03% and the total number of triggering times of the system is 
reduced by more than 59.8% by the APST-MPC controller based on ESO compared with the MPC controller.
1. Introduction

Significant advancements in computer and artificial intelligence 
technologies have fostered the robust development of mobile robot 
technology. Mobile robots have been extensively deployed across a 
multitude of domains [1], including critical areas such as industrial 
transportation [2], agricultural pest control [3], fire and rescue op-
erations [4], healthcare [5], planetary exploration [6], and military 
reconnaissance [7]. This widespread adoption is attributable to their 
inherent advantages, which include lightweight construction, maneu-
verability, flexibility, and the capacity to endure substantial loads. 
Building upon the realization of autonomous mobility, further enhanc-
ing the operational efficiency of mobile robots has emerged as a critical 
challenge to address. Undoubtedly, accurate trajectory tracking control 
technology stands at the heart of resolving this issue.

During the operation of mobile robots, numerous complex factors 
come into play. In addition to common external disturbances, such as 
friction and gusts, which affect their motion, there are also internal 
factors to consider, including parameter uncertainty, modeling errors, 
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and unmodeled dynamics [8]. These factors are interrelated and pose 
significant challenges to the accurate trajectory tracking of mobile 
robots. Therefore, effectively suppressing or compensating for the im-
pact of these disturbing factors on the system is crucial for enhancing 
the accuracy of trajectory tracking control. This improvement is of 
significant importance for boosting the overall operational capability 
of mobile robots. It is not only related to the performance of mobile 
robots across various application domains but also constitutes a key 
determinant for their stable and efficient operation under intricate and 
fluctuating conditions.

In the domain of trajectory tracking control for wheeled mobile 
robots, the primary challenge lies in accurately following the pre-
set reference trajectory in the shortest possible time [9]. During this 
process, it is essential to consider various factors comprehensively, 
encompassing factors such as temporal expenditure, accuracy, and 
system steadiness, to guarantee the high accuracy of trajectory track-
ing. To enhance the resilience of robotic trajectory tracking control, 
academics worldwide have invested significant effort in conducting in-
depth research. A multitude of control strategies have been introduced 
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 data mining, AI training, and similar technologies. 
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and applied in trajectory tracking control applications, including ro-
bust control [10,11], neural network control [12,13], sliding mode 
control [14,15], adaptive control [16,17] and so on. Model predictive 
control (MPC) has garnered extensive application and attention within 
the realm of robot trajectory tracking control in recent years. This 
is attributable to its notable advantages, which include straightfor-
ward modeling, efficient management of multivariate and constrained 
issues [18], timely compensation for uncertainties caused by model 
mismatches and external disturbances, and excellent dynamic perfor-
mance. For instance, relevant research findings have been articulated 
in Refs. [19–21], thereby substantiating the practical efficacy and 
application potential of MPC in this domain.

To achieve high-performance trajectory tracking for mobile robots, 
the MPC method relies on accurate model information. However, ob-
taining highly accurate models is challenging due to the inherent strong 
nonlinearity and parameter uncertainty of robots. Common mechanism 
modeling methods depend on various physical variables [22,23], and 
in practice, some parameters cannot be measured and are difficult to 
estimate [24,25], which greatly limits the application range of the 
models. The data-driven modeling method provides a novel approach 
to addressing this issue, as it can directly extract and construct models 
of unknown systems from available data. The Koopman operator [26] 
is capable of mapping a nonlinear system into a linear infinite di-
mensional space, thereby achieving the global linearization of the 
nonlinear system [27]. Kim et al. [28] developed a vehicle model 
grounded in Koopman theory for capturing nonlinear dynamic behav-
iors of lane-keeping systems under various driving conditions. The 
extended dynamic mode decomposition (EDMD) method was employed 
to estimate the Koopman operator in a confined, finite-dimensional 
setting, and the stochastic MPC scheme grounded in the Koopman 
operator was designed to address the modeling error associated with 
the approximated Koopman operator within the EDMD approach. Li 
et al. [29] introduced a Koopman modeling approach based on input 
reinforcement learning to enhance the predictive capability of the 
Koopman model for multiple future steps by boosting the state and 
known input through two deep neural networks (DNNs) while training 
the Koopman model with nonlinear input in a high-dimensional state 
space.

The operating environment of mobile robots is frequently highly 
complex, with various interference factors such as friction and external 
disturbances, adversely impacting the normal operation of the robots, 
thereby affecting the accuracy and efficiency of task execution. There-
fore, to ensure that mobile robots can operate stably and efficiently in 
complex environments and achieve their designated task objectives, it 
is imperative to implement effective measures to mitigate the interfer-
ence of these disturbance factors on the system, thereby improving the 
robustness and reliability of the system. Hameed et al. [30] considered 
all torque disturbances and parameter uncertainties of mobile robot 
as generalized disturbances, which were observed and eliminated in 
real-time utilizing a nonlinear sliding mode extended state observer. 
Rodríguez-Arellano et al. [31] proposed a new observer-based 𝐻∞
controller capable of resisting both matched and mismatched distur-
bances. This controller compensated for the disturbances by employing 
an observer to estimate disturbances and convert the closed-loop sys-
tem into one subject to bounded disturbances uniformly. To tackle 
the challenge of increasing disturbance boundary changes caused by 
sudden transitions, Wu et al. [32] designed an adaptive disturbance 
observer and constructed a new switching law based on barrier func-
tions to suppress residual disturbance estimation error of the adaptive 
disturbance observer under transient conditions.

In the application of MPC, the solution of optimization problems 
occurs at each sampling time [33], which demands substantial com-
putational resources. However, in practice, solely the initial control 
variable in the computed control sequence is typically implemented 
in the actual system [34], resulting in a significant consumption of 
calculation work. To effectively address this issue, the self-triggered 
2 
mechanism has emerged as necessary, with its core objective being 
the reduction of the frequency at which optimization problems are 
solved. This mechanism enables the system to obtain the latter trig-
gering time without relying on continuous attention, thereby reducing 
unnecessary computations and enhancing the efficiency of resource 
utilization. Furthermore, the self-triggered mechanism also does not 
require additional hardware support, which not only reduces the opera-
tional costs of the system but also streamlines the maintenance process. 
Heshmati-alamdari et al. [35] adopted a vision-driven self-triggered 
control approach to obtain control inputs and the subsequent triggering 
times, thereby avoiding continuous measurements by the visual system 
and reducing processing time and energy consumption. Cao et al. [36] 
designed a self-triggered scheme grounded in the Lyapunov function 
to reduce the computational burden associated with MPC, wherein the 
controller transitions to the terminal controller once the tracking error 
enters the terminal region.

Table  1 summarizes the relevant research on robot trajectory track-
ing control in ascending order of publication year.

The combination of different modeling techniques and control meth-
ods for robots has been widely used for trajectory tracking control 
of mobile robots. From Table  1, it can be seen that most reference 
adopts mechanism modeling methods, and the research on data-driven 
modeling methods is still in the stage of continuous exploration. There 
is relatively little consideration for disturbances in existing reference. 
In recent years, the deep Koopman operator theory has emerged as a 
novel tool for nonlinear system modeling, providing a new perspective 
for solving robot modeling challenges and simplifying control design. 
However, how to combine the deep Koopman operator with existing 
control strategies to enhance the accuracy and robustness of trajectory 
tracking remains an open problem. Furthermore, the extended state 
observer (ESO) as an effective tool for disturbance observation and 
compensation, and the adaptive predictive time domain self-triggered 
model predictive control (APST-MPC) algorithm as a control strategy to 
reduce computational burden, their integrated application is expected 
to further enhance the trajectory tracking performance of mobile robot. 
In light of this, this study integrates deep Koopman theory, ESO, and 
APST-MPC approach to conduct an in-depth exploration of the trajec-
tory tracking control problem for wheeled mobile robot. This method 
can not only handle model uncertainty and external disturbances, 
but also reduce computational requirements while ensuring control 
accuracy. The primary research contributions encompass the following 
three points:

(1) This study proposes a deep Koopman operator modeling frame-
work that integrates DNN and EDMD, achieving a global lin-
earization representation of the strong nonlinear dynamic sys-
tem of mobile robot, reducing dependence on accurate model 
parameters, significantly improving the model’s generalization 
ability to unmodeled dynamics and parameter uncertainties, and 
simplifying the design complexity of MPC controller.

(2) This study designs a unified disturbance processing strategy 
based on ESO, which models the internal parameter perturba-
tions and external disturbances of mobile robot as ‘‘total dis-
turbances’’, and uses linear ESO for real-time estimation and 
compensation. Under the premise of ensuring input-state stabil-
ity, the triggering interval is expanded, the triggering frequency 
of the system is reduced, and the robustness of the controller is 
significantly enhanced.

(3) This study combines adaptive predictive time domain and self-
triggered mechanisms to propose the APST-MPC algorithm to 
balance control accuracy and computational efficiency. By dy-
namically adjusting the predictive time domain length and non-
periodic triggering conditions, the computational burden of the 
controller is significantly reduced, the utilization of computing 
resources is optimized, and the operating efficiency of the system 
is enhanced while maintaining the tracking accuracy.
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Table 1
Reference review on robot trajectory tracking control.
 Authors (year) Model/Method Disturbances estimation 

method
Control method/Optimize MPC calculation 

 Yang (2018) [19] Kinematics model/Mechanism No Model predictive control/No  
 Shu (2018) [17] Dynamics model/Mechanism No Adaptive control  
 Cao (2019) [36] Kinematics model/Mechanism No Model predictive control/Yes  
 Zhao (2021) [12] Kinematics model/Mechanism No Fuzzy+Neural network  
 Cen (2021) [14] Kinematics model/Mechanism No Sliding mode control  
 Chen (2022) [15] Dynamics model/Mechanism No Adaptive optimal control  
 Hameed (2023) [30] Kinematics+dynamics model/Mechanism Nonlinear sliding mode

extended state observer
Active disturbance rejection control  

 Cenerini (2023) [34] Kinematics model/Mechanism No Model predictive control/No  
 Cao (2023) [13] Kinematics model/Data driven New fractional exponential

activation function
Zeroing neural network  

 Rodríguez-Arellano (2023) [31] Kinematics model/Mechanism Disturbance observer 𝐻∞ control  
 You (2024) [20] Kinematics model/Mechanism No PID+Model predictive control /Yes  
 Kim (2025) [28] Dynamics model/Data driven No Model predictive control/No  
The subsequent sections of this paper will be structured as outlined 
below. Section 2 will construct a deep Koopman linear model for 
wheeled mobile robot. Section 3 will utilize an ESO to compensate for 
operational disturbances. In Section 4, an APST-MPC controller will be 
designed to make the robot track the reference trajectory accurately. 
Section 5 will conduct simulations and analyzes the accuracy of the 
deep Koopman linear model and the effectiveness of the trajectory 
tracking control. Section 6 will provide the conclusions.

2. Problem statement and system modeling

Due to the tire characteristics, the dynamics of the robot exhibit 
strong coupling and nonlinearity. This paper proposes a DNN approach 
grounded in the Koopman operator to get the dynamic model of the 
robot system. The weights of the DNN are optimized exclusively with 
pre-gathered datasets comprising state and control inputs, thereby 
attaining an accurate depiction of the robotic system’s dynamics. The 
obtained model comprises a stationary nonlinear DNN that maps the 
state space into the lifted state space, coupled with the linear model 
that evolves within this lifted state space.

2.1. Koopman operator using the EDMD

Consider the mobile robot as a discrete-time nonlinear dynamic 
system characterized by external inputs 
𝒙(𝑘 + 1) = 𝑓 (𝒙(𝑘), 𝒖(𝑘)) (1)

where 𝑘 ∈ Z is the discrete time step, 𝒙(𝑘) ∈  ⊆ R𝑛 is the state 
variables of the system, and 𝒙(𝑘) = [

𝑥(𝑘) 𝑦(𝑘) 𝜃(𝑘)
]T. 𝒖(𝑘) ∈  ⊆

R𝑚 are the control inputs of the system, and 𝒖(𝑘) =
[

𝑣(𝑘) 𝛿(𝑘)
]T. 𝑥

and 𝑦 are the current positions of the robot, 𝜃 is the heading angle, 𝑣 is 
operating speed, and 𝛿 is the front wheel steering angle. 𝑓 (𝒙, 𝒖) denotes 
the system’s nonlinear evolution of its state dynamics temporally. 
and  are the state space, R is the real domain, and R𝑛 represents the 
𝑛-dimensional Euclidean space of real-valued vectors, 𝑛 and 𝑚 are the 
dimensions of the system states and inputs, respectively. Fig.  1 shows 
the model of a mobile robot.

Merge state variables 𝒙(𝑘) and control inputs 𝒖(𝑘) into an expanded 
state 

𝜁 =
[

𝒙(𝑘)
𝒖(𝑘)

]

(2)

where 𝒖: = 𝑢∞0  signifies the set of all control inputs within the control 
space . The Koopman operator of the extended state 𝜻 on (1) is 
written as 
𝝋
(

𝜻𝑘+1
)

= 𝝋(𝜻𝑘) (3)

where  denotes the infinite-dimensional Koopman operator and
𝝋(𝜻𝑘) ∈ R is an observable function in lifted space that belongs to an 
infinite-dimensional Hilbert space.
3 
Fig. 1. Mobile robot model.

The state 𝜻𝑘 of the original nonlinear system is finite-dimensional, 
exhibits infinite dimensional properties and linearity in the observable 
state space [37] adopting 𝝋(𝜻𝑘) =

[

𝝋1(𝒙𝑘)T ⋯ 𝝋𝐿(𝒙𝑘)T 𝒖T𝑘
]T ∈

R𝐿+𝑚 as a set of observable functions, where 𝐿 denotes the count of 
observable functions of the 𝒙. Due to the fact that the future control 
inputs 𝒖𝑘+1 does not require prediction, only the first 𝐿 rows of 𝝋 (

𝜻𝑘+1
)

are concerned. The approximate Koopman operator can be decomposed 
into [𝑨 𝑩

]

, where 𝑨 ∈ R𝐿×𝐿, 𝑩 ∈ R𝐿×𝑚 are the linear constant ma-
trices of the lifted model. Consequently, the Koopman model obtained 
in the observable space is 

𝝋
(

𝜻𝑘+1
)

=
[

𝑨 𝑩
]

[

𝝋
(

𝒙𝑘
)

𝒖𝑘

]

(4)

Assuming there is a dataset 𝑫 = {(𝒙(𝑘), 𝒖(𝑘)) , 𝑘 = 1,… ,𝑀} that meets 
system (1), matrices 𝑨 and 𝑩 can be determined by resolving the least-
squares error (5) using the dataset 𝑫. Define the matrix 𝑪 ∈ R𝑛×𝐿, map 
𝝋(𝒙) back to the 𝒙, and solve the minimization problem of (6) to obtain 
the matrix 𝑪 in the least squares sense. 

min
𝑨,𝑩

𝑀
∑

𝑘=1

‖

‖

‖

𝝋(𝒙+𝑘 ) −𝑨𝝋(𝒙𝑘) − 𝑩𝒖𝑘
‖

‖

‖

2

𝐹
(5)

min
𝑪

𝑀
∑

𝑘=1

‖

‖

𝒙𝑘 − 𝑪𝝋(𝒙𝑘)‖‖
2
𝐹 (6)

where 𝒙+𝑘  is the evolution of 𝒙𝑘 along with 𝒖𝑘, and ‖⋅‖ is Euclidean 
norm. By solving (5) and (6), the matrices 𝑨, 𝑩 and 𝑪 are derived as 
follows. 
[

𝑨 𝑩
]

= 𝑽 𝑮T(𝑮𝑮T)† (7)

𝑪 = 𝑿𝑯† (8)

Among them † is the Moore–Penrose pseudoinverse. 𝑽 =
[

𝝋(𝒙1) ⋯ 𝝋(𝒙+𝑀 )
]

, 𝑮 =
[

𝑬
𝑼

]

=
[

𝝋(𝒙1) ⋯ 𝝋(𝒙𝑀 )
𝒖1 ⋯ 𝒖𝑀

]

, 𝑯 =
[ ]

, 𝑿 =
[ ]

.
𝝋(𝒙1) ⋯ 𝝋(𝒙𝑀 ) 𝒙1 ⋯ 𝒙𝑀



M. Tang et al. Robotics and Autonomous Systems 194 (2025) 105152 
Fig. 2. Deep EDMD architecture.
2.2. Deep EDMD method modeling

The robot dynamics modeling algorithm based on the deep EDMD 
integrates a DNN into the EDMD approach to obtain the estimation 
of the finite-dimensional Koopman operator. This algorithm utilizes 
the DNN to automatically construct the observable subspace associated 
with the Koopman operator. The approximate dynamics generated by 
the deep EDMD can be formulated as follows 
{

𝒛𝑘+1 = 𝜱𝑘

�̂�𝑘 = �̃�𝑘
(

𝒛𝑘,𝝓d
) (9)

where  =
[

𝑨 𝑩
]

∈ R𝐿×𝑁 , 𝑁 = 𝐿 + 𝑚. 𝒛𝑘 is the lifted observable 
space obtained by the encoder with weight 𝝓e. 𝜱𝑘 =

[

𝒛T𝑘 𝒖T𝑘
]

∈ R𝑁 , 
where �̃�𝑘 is the decoder, with a weight of 𝝓d.

Fig.  2 presents the architecture of the deep EDMD approach. The 
deep EDMD approach is predicated on the encoder and decoder, serving 
as the observable functions and the Koopman model, respectively. 
Firstly, the original state variables 𝒙𝑘 are mapped to the lifted observ-
able space 𝒛𝑘 through the encoder. Secondly, 𝒛𝑘 and 𝒖𝑘 are combined 
to form a lifted state, which is used to construct linear evolution in 
the lifted space. Again, the subsequent states 𝒛𝑘+1 are calculated by the 
linear Koopman model. Finally, the state of the robot is restored from 
the lifted state space by a decoder composed of fully connected layers.

The output of DNN is defined by 

𝒚(𝑙)𝑗 = 𝜎(𝑙)𝑗
(

𝑾 (𝑙)
𝑗 𝒚(𝑙−1)𝑗 + 𝑏(𝑙)𝑗

)

(10)

where 𝑗 = e,d denotes the subscript of the encoder or decoder re-
spectively. 𝜎(𝑙), 𝑾 (𝑙) ∈ R𝑛𝑙×𝑛𝑙−1  and 𝑏(𝑙) ∈ R𝑛𝑙  indicate the activation 
function, weight, and bias of the hidden layer 𝑙, respectively. 𝑙 =
1,… , 𝑛ℎ, 𝑛ℎ is the number of hidden layers of the encoder and decoder, 
and 𝑛𝑙 is the number of hidden layer neurons.

Obtain the lifted state 𝒛𝑘 through the encoder, 

𝒛𝑘 =
[

𝒙T𝑘
(

𝒚𝑛ℎe
)T
]T

(11)

where 𝒚𝑛ℎe  represents the output from the final layer of the encoder’s 
NN, 𝒚(0)e = 𝒙𝑘. 𝒛𝑘+1 = 𝕴𝛷𝑘 is a linear time-invariant system, where 
𝕴 represents the multi-step linear evolution of , extended to 𝑝-step 
ahead state as follows. 

𝒛𝑘+𝑝 = 𝑨𝑝𝒛𝑘 +
𝑝
∑

𝑖=1
𝑨𝑖−1𝑩𝒖𝑘+𝑝−𝑖 (12)

The reconstructed state �̂�𝑘 is calculated by the decoder based on 𝒛𝑘
�̂� = �̃�

(

𝒛 ,𝝓
)

(13)
𝑘 𝑘 𝑘 d

4 
Ensure the consistency of the Koopman linear system and the orig-
inal nonlinear system evolution over time, and minimize the state 
prediction loss. 

𝐿p = 1
𝑝

𝑝
∑

𝑖=1

‖

‖

‖

𝒙𝑘+𝑖 − �̃�𝑘
(

𝕴𝑖𝜱𝑘,𝝓d
)

‖

‖

‖

2

2
(14)

The modeling accuracy is enhanced through the reduction of predic-
tion discrepancies in the lifted observation space, thereby minimizing 
the loss within the lifted linear space. 

𝐿l =
1
𝑝

𝑝
∑

𝑖=1

‖

‖

‖

𝒛𝑘+𝑖 −𝕴𝑖𝜱𝑘
‖

‖

‖

2

2
(15)

Ensure that deep Koopman learns effective observation functions so 
that the state variables can be recovered from the lifted state through 
the decoder, minimizing the reconstruction error loss. 

𝐿r =
1
𝑝

𝑝
∑

𝑖=1

‖

‖

‖

𝒙𝑖 − �̃�𝑘
(

𝒛𝑖,𝝓d
)

‖

‖

‖

2

2
(16)

To avoid overfitting, the 𝐿2 regularization loss function is used, that 
is 
𝐿2 = ‖

‖

𝝓e‖‖
2
2 + ‖

‖

𝝓d‖‖
2
2 (17)

The estimation steps of the Koopman operator are optimized by 
introducing the aforementioned loss function, aiming to minimize the 
weighted loss function 𝐿. 
𝐿 = 𝛼𝐿p + 𝛽𝐿l + 𝛾𝐿r + 𝜇𝐿2 (18)

where 𝛼, 𝛽, 𝛾, 𝜇 are the corresponding weights of different losses, indi-
cating the importance of each loss.

Algorithm 1 delineates the specific process of the robot modeling 
method utilizing the deep Koopman operator.

After training by the deep Koopman operator method, get the 
mobile robot’s approximated dynamic linear model 
{

𝒛𝑘+1 = 𝑨𝒛𝑘 + 𝑩𝒖𝑘
�̂�𝑘 = �̃�𝑘

(

𝒛𝑘,𝝓d
) (19)

3. Design of extended state observer

The deep Koopman operator constructs a model of the robot’s 
system utilizing offline The deep Koopman operator can construct high-
dimensional models for nonlinear systems and predict robot states by 
analyzing the input and output data of the system. However, it is 
challenging to accurately measure friction and external disturbances in 
practical operating environments. Relying solely on offline data models 
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Algorithm 1 Deep EDMD modeling
Initialize 𝝓e, 𝝓d, 𝑨, 𝑩, time step 𝑝, 𝑖 = 0,⋯ , 𝑝, training period 𝐸, loss 
weight 𝛼, 𝛽, 𝛾, 𝜇, batch size 𝑏𝑠, 𝑗 = 1,⋯ , 𝑏𝑠, small scalar 𝜎 > 0;
while 𝐸 < 𝐸max or |𝐿| > 𝜎 do
 Reset the training set;
 while the training cycle is not terminated do
 Sample the robot’s state and control input data sequences;
 Get the lifted state according to 𝒛𝑘 =

[

𝒙T𝑘
(

𝒚𝑛ℎe
)T
]T

 and the 
reconstruction state according to �̂�𝑘 = �̃�𝑘

(

𝒛𝑘,𝝓d
)

;
 Execute the 𝑝-step Koopman operator according to 𝒛𝑘+𝑝 =

𝑨𝑝𝒛𝑘 +
𝑝
∑

𝑖=1
𝑨𝑖−1𝑩𝒖𝑘+𝑝−𝑖;

 Solve the weighted loss 𝐿 minimization problem update 𝝓e, 
𝝓d, 𝑨, 𝑩;
 end while
 𝐸=𝐸 + 1
end while

makes it challenging to accurately predict the robot’s state in practical 
applications, potentially reducing control accuracy and even leading to 
system instability. To obtain a higher accurate mobile robot’s model, it 
is necessary to employ an observer to estimate and compensate for dis-
turbances in real-time. The ESO is an advanced method for disturbance 
estimation that converts internal disturbances within the system into an 
additional state variable [38]. By analyzing actual input–output data, 
the ESO can accurately estimate the system’s state, thereby improving 
control accuracy.

The mobile robot system consists of a nominal system without 
disturbances and a disturbance system with disturbances. The control 
variable 𝒖(𝑘) is represented as 

𝒖(𝑘) = 𝒖n(𝑘) − 𝒖d(𝑘) (20)

where 𝒖n(𝑘) denotes the nominal system control variable and 𝒖d(𝑘)
denotes the disturbance compensation control variable.

Expand the disturbances into a new state variable 𝒛2, denoted as 
𝒛2(𝑘) = 𝒅(𝑘), and denoted as 𝒛2(𝑘 + 1) = 𝝌(𝑘). The expanded state 
equation of the mobile robot disturbance system is obtained from the 
robot training model (19) as 
{

𝒛d(𝑘 + 1) = 𝑪𝑨𝒛d(𝑘) + 𝑪𝑩𝒖d(𝑘) + 𝒚1(𝑘)
𝒛2(𝑘 + 1) = 𝝌(𝑘) (21)

According to the expanded new system (21), a linear ESO is estab-
lished. 
⎧

⎪

⎨

⎪

⎩

𝒆1(𝑘) =
⌢
𝒛d(𝑘) − 𝒛d(𝑘)

⌢
𝒛d(𝑘 + 1) = 𝑪𝑨

⌢
𝒛d(𝑘) +

⌢
𝒛 2(𝑘) + 𝑪𝑩𝒖d(𝑘) − 𝓵1𝒈1

(

𝒆1(𝑘)
)

⌢
𝒛 2(𝑘 + 1) = −𝓵2𝒈2

(

𝒆1(𝑘)
)

(22)

where ⌢𝒛d is the estimated value of the system state 𝒛d, 
⌢
𝒛 2 is the 

estimated value of the disturbance 𝒛2, 𝓵1 and 𝓵2 are the gain matrices 
of the observer, and −𝓵𝑖𝒈𝑖

(

𝒆1
) is the nonlinear feedback form. When 

the nonlinear function 𝒈𝑖
(

𝒆1
) satisfies 𝒆1𝒈𝑖

(

𝒆1
)

> 0,∀𝒆1 ≠ 0, it can 
make the system’s state asymptotically converge to the true value, 
i.e., lim

𝑘→∞

⌢
𝒛d(𝑘) = 𝒛d(𝑘). In particular, when 𝒈𝑖

(

𝒆1
)

= 𝒆1, the system 
can be simplified into the following ESO structure. 
⎧

⎪

⎨

⎪

⎩

𝒆1(𝑘) =
⌢
𝒛d(𝑘) − 𝒛d(𝑘)

⌢
𝒛d(𝑘 + 1) = 𝑪𝑨

⌢
𝒛d(𝑘) +

⌢
𝒛 2(𝑘) + 𝑪𝑩𝒖d(𝑘) − 𝓵1𝒆1

⌢
𝒛 2(𝑘 + 1) = −𝓵2𝒆1

(23)

The corresponding observation error system is 

𝒆 (𝑘 + 1) = 𝑪𝑨 𝒆 (𝑘) + 𝝃 (𝑘) (24)
𝑖 𝑖 𝑖 𝑖

5 
included among these

𝒆𝑖(𝑘) =
[

𝒆1(𝑘)
𝒆2(𝑘)

]

,𝑪𝑨𝑖 =
[

𝑪𝑨 − 𝓵1 𝑰
−𝓵2 𝟎

]

, 𝝃𝑖 =
[

𝟎
−𝝌(𝑘)

]

,

𝒆1(𝑘) =
⌢
𝒛d(𝑘) − 𝒛d(𝑘), 𝒆2(𝑘) =

⌢
𝒛 2(𝑘) − 𝒛2(𝑘)

Theorem 1 ([39]). If the observation error system (24) has a continuous 
function 𝑿 ∶ R2𝑛 → R+, it satisfies (25) when there are 𝑲∞-class functions 
𝜶1, 𝜶2, and satisfies (26) when there are 𝑲∞-class function 𝜶3 and 𝑲-class 
function 𝜸
𝜶1

(

|

|

𝒆𝑖||
)

≤ 𝑿
(

𝒆𝑖 (𝑘)
)

≤ 𝜶2
(

|

|

𝒆𝑖||
)

,∀𝒆𝑖 ∈ R2𝑛𝑖 (25)

𝑿
(

𝒆𝑖 (𝑘 + 1)
)

−𝑿
(

𝒆𝑖 (𝑘)
)

≤ −𝜶3
(

|

|

𝒆𝑖||
)

+ 𝜸
(

|

|

𝝃𝑖||
)

,∀𝒆𝑖 ∈ R2𝑛𝑖 ,∀𝒔 ∈ R2𝑛𝑖

(26)

Then 𝑿𝑖 is an input-state stable Lyapunov function (ISS-Lyapunov) and the 
system has input-to-state stability (ISS).

Proof.  For the observation error system (24), given a positive definite 
matrix 𝑫𝑖 ∈ R2×𝑛𝑖 , by selecting an appropriate observer gain 𝓵𝑖, the 
eigenvalues of the state matrix 𝑪𝑨𝑖 of (24) are all in the unit circle, 
and then by solving the equation 
(

𝑪𝑨𝑖
)T𝑺 𝑖

(

𝑪𝑨𝑖
)

− 𝑺 𝑖 = −𝑫𝑖 (27)

The symmetric positive definite matrix 𝑺 𝑖 is obtained, and the ISS-
Lyapunov function of (24) is obtained 
𝑿𝑖

(

𝒆𝑖
)

= 𝒆T𝑖 𝑺 𝑖𝒆𝑖 (28)

When 𝜶1 (𝑟) = 𝜆max
(

𝑺 𝑖
)

𝑟2, 𝛼2 (𝑟) = 𝜆min
(

𝑺 𝑖
)

𝑟2, 𝑿𝑖
(

𝒆𝑖
) satisfies (25). 

When 𝜶3 (𝑟) = 0.5𝜆min
(

𝑫𝑖
)

𝑟2, 𝜸 (𝑟) =
([

2||
|

(

𝑪𝑨𝑖
)T𝑺 𝑖

|

|

|

2
∕𝜆min𝑫𝑖

]

+ |

|

𝑺 𝑖
|

|

2
)

𝑟2, 𝑿𝑖
(

𝒆𝑖
) satisfies (26). Therefore, 

the function (28) is the ISS-Lyapunov function of the error system (24) 
and (24) has ISS, thus the observation error is bounded. □

Remark 1. The ISS system’s output does not approach the origin but 
rather to a neighborhood of the origin. Meanwhile, the ISS of the system 
can be guaranteed by finding an ISS-Lyapunov function [40].

Remark 2. By integrating ESO and the deep Koopman operator, the sys-
tem’s ability to resist disturbance has been significantly improved. Com-
pared with traditional methods that rely solely on model compensation, 
this method significantly improves anti-disturbance performance and 
does not rely on accurate system parameters. In addition, this strategy 
is not only applicable to specific system parameters or environments, 
but also has applicability under a wider range of conditions, thereby 
enhancing the model’s generalization ability.

The �̂�(𝑘) obtained by the ESO is utilized to calculate the 𝒖d(𝑘). 
𝒖d(𝑘) = (𝑪𝑩)−1�̂�(𝑘) (29)

4. Design of APST-MPC controller

This section proposes an APST-MPC design scheme based on the 
robot model constructed in Section 2, aiming to illustrate how to utilize 
the trained model to achieve more accurate trajectory tracking control 
of the robot while reducing the solution frequency.

Fig.  3 illustrates the control architecture of the ESO-APST-MPC. 
The linear model of the robot derived from deep Koopman operator 
training covers both the nominal model and the disturbance model. In 
this study, the design of an APST-MPC controller is specifically tailored 
for the nominal model, while an ESO is formulated to estimate the 
disturbances for the disturbance model. The model trained with the 
deep Koopman operator exhibits greater similarity to the actual system 
during the control process, even in the presence of disturbances. Under 
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Fig. 3. ESO-APST-MPC control structure diagram.

the control of the APST-MPC controller, the mobile robot is capable of 
accurately tracking the reference trajectory with fewer triggers, thereby 
significantly reducing the consumption of computing resources and 
improving the overall performance and efficiency of the system while 
ensuring control accuracy.

4.1. Optimization problem

The nominal model of the robot without disturbances is 
{

𝒛n(𝑘 + 1) = 𝑨𝒛n(𝑘) + 𝑩𝒖n(𝑘)
𝒚n(𝑘) = 𝑪𝒛n(𝑘)

(30)

The output expression in the predictive time domain is 
𝒚n(𝑘 + 1) = 𝑭𝒛n(𝑘) +𝑴𝒖n(𝑘) (31)

Among them

𝒚n(𝑘 + 1) =

⎡

⎢

⎢

⎢

⎢

⎣

𝒚n(𝑘 + 1|𝑘)
𝒚n(𝑘 + 2|𝑘)

⋮
𝒚n (𝑘 +𝑁|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝒖n(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝒖n(𝑘|𝑘)
𝒖n(𝑘 + 1|𝑘)

⋮
𝒖n (𝑘 +𝑁 − 1|𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

𝑭 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝑨
𝑪𝑨2

⋮
𝑪𝑨𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,𝑴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝑩 𝟎 ⋯ 𝟎
𝑪𝑨𝑩 𝑪𝑩 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮

𝑪𝑨𝑁−1𝑩 𝑪𝑨𝑁−2𝑩 ⋯ 𝑪𝑩

⎤

⎥

⎥

⎥

⎥

⎦In order to guarantee the robot effectively and stably track reference 
trajectory, the objective function is designed 

𝑱
(

𝒚e(𝑘), 𝒖n(𝑘), 𝑁
)

=
𝑁−1
∑

𝑖=0

(

‖

‖

𝒚e(𝑘 + 𝑖|𝑘)‖
‖

2
𝝉1

+ ‖

‖

𝒖e(𝑘 + 𝑖|𝑘)‖
‖

2
𝝉2

)

+ ‖

‖

𝒚e(𝑘 +𝑁|𝑘)‖
‖

2
𝝉3

(32)

where 𝒚e(𝑘) is the error between the reference state 𝒚r(𝑘) and the actual 
state, 𝒖e(𝑘) is the error between the reference control input 𝒖r(𝑘) and 
the actual control variable, and 𝝉 𝑖, 𝑖 = 1, 2, 3 are the weight coefficients.

4.2. Adaptive predictive time domain self-triggered control

The predictive time domain determines the length of the MPC 
method to predict the behavior of the system. by. A longer predictive 
time domain ensures system stability but increases the computational 
load. Conversely, a shorter predictive time domain diminishes the 
system’s anti-disturbance capability, but can simplify the optimization 
problem. In MPC, the predictive time domain is typically a constant that 
6 
remains constant value, remaining consistent at each step of solving 
the optimization problem. However, as the tracking error is close to 
the terminal region, the shorter predictive time domain can already 
satisfy the terminal constraints. Based on this observation, this section 
designs an adaptive predictive time domain calculation method, which 
employs an adaptive method to reduce the predictive time domain, 
thereby reducing the dimensionality and computational complexity 
when solving optimization problem [41].

Traditional MPC operates on a time-triggered, periodic basis, ap-
plying solely the initial control variable to the control system. The 
event-triggered mechanism necessitates the measurement of the system 
state and the calculation of the tracking error at each step [42], and 
the determination of the triggering condition and the latter triggering 
time determined by this error. A self-triggered approach for activating 
the optimal problem solver is proposed in this section. The latter 
triggering time for the self-triggered mechanism is obtained at the prior 
triggering time, which requires fewer state information while ensuring 
the suboptimal convergence performance.

The following convergence performance can be guaranteed in the 
time-triggered MPC with a fixed predictive time domain. 
𝑮
(

𝒚e (𝑘 |𝑘 ) , 𝒖e (𝑘 |𝑘 )
)

≤ 𝑱
(

𝒚∗e (𝑘) , 𝒖
∗
e (𝑘) , 𝑁

)

− 𝑱
(

𝒚∗e (𝑘 + 1) , 𝒖∗e (𝑘 + 1) , 𝑁
) (33)

Under the influence of the APST-MPC controller, factors such as 
disturbances inherent to the mobile robot system, the aperiodicity of 
control, and the adaptability of the prediction range will affect the 
robot’s tracking effect. Different from the time-triggered MPC, {𝑘𝑗

} is 
defined as the triggering time sequence, and the next time is updated 
as 
𝑘𝑗+1 = 𝑘𝑗 + 𝐼𝑘, 𝑘0 = 0 (34)

where 𝑘𝑗 is the triggering time, the triggering interval time 𝐼𝑘 is 
determined according to the current actual state variables. The range 
of 𝐼𝑘 is 𝜀 ≤ 𝐼𝑘 ≤ 𝑁𝑘𝑗 , where 𝜀 is an adjustable parameter.

To ensure the control effect of the controller design (35). 

1
𝜂

𝐼𝑘−1
∑

𝑖=0
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

≤ 𝑱
(

𝒚∗e
(

𝑘𝑗+1
)

, 𝒖∗e
(

𝑘𝑗+1
)

, 𝑁𝑘𝑗+1

)

− 𝑱
(

𝒚∗e
(

𝑘𝑗
)

, 𝒖∗e
(

𝑘𝑗
)

, 𝑁𝑘𝑗

)

(35)

where 𝜂 ≥ 1 denotes the level of performance loss. According to (33)

𝑱
(

𝒚∗e
(

𝑘𝑗+1
)

, 𝒖∗e
(

𝑘𝑗+1
)

, 𝑁𝑘𝑗+1

)

− 𝑱
(

𝒚∗e
(

𝑘𝑗
)

, 𝒖∗e
(

𝑘𝑗
)

, 𝑁𝑘𝑗

)

≤ −
𝐼𝑘−1
∑

𝑖=0
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

(36)

To ensure the suboptimal performance of the controller (35), the trig-
gering interval time 𝐼𝑘 satisfies the following condition. 

𝐼𝑘 ≤ (1 − 1
𝜂
) ×

𝐼𝑘−1
∑

𝑖=0
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖n
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

(37)

In practical application, the upper bound in (37) is taken as the value 
of triggering interval time 𝐼𝑘, 𝐼𝑘 ∈ N[1,𝑁𝑘𝑗 ]

.
Define 𝑁𝑘𝑗  as the predictive time domain at 𝑘𝑗 , and obtain the 

adaptive update of the predictive time domain at the time 𝑘𝑗+1 as [42] 

𝑁𝑘𝑗+1 = 𝑁𝑘𝑗 − 𝑆𝑘, 𝑁0 = 𝑁p (38)

where 𝑆𝑘 represents the contraction of the predictive time domain, 
which is determined at time 𝑘𝑗 . The constant 𝑁𝑝 ensures the existence 
of a solution to the optimization problem at the initial time. To ensure 
the stability of the system, the predictive time domain is updated 
according to (38), and its contraction is 

𝑆 = min
{

𝐼 − 1, 𝑁 − �̂�
}

(39)
𝑘 𝑘 𝑘𝑗 𝑘𝑗



M. Tang et al.

 

Robotics and Autonomous Systems 194 (2025) 105152 
where �̂�𝑘𝑗 = inf
{

𝑖 ∶ 𝒚∗e(𝑘𝑗 + 𝑖|𝑘𝑗 ) ∈ 𝛺𝛤
} is the shortest predictive 

time domain that ensures the iteration of the optimization problem is 
feasible.

The optimal state sequence 𝒚∗n(𝑘𝑗 ) and the optimal control sequence 
𝒖∗n(𝑘𝑗 ) in 𝑁𝑘𝑗  are derived by calculating the minimization problem at 
𝑘𝑗 . 

𝒖∗n(𝑘𝑗 ) = arg min
𝒖𝑛(𝑘𝑗 )

𝑱
(

𝒚e(𝑘𝑗 ), 𝒖n(𝑘𝑗 ), 𝑁𝑘𝑗

)

s.t.

𝒚e(𝑘𝑗 |𝑘𝑗 ) = 𝒚e(𝑘𝑗 )
𝒖n(𝑘𝑗 + 𝑖|𝑘𝑗 ) ∈ U

𝒚e(𝑘𝑗 + 𝑖 + 1|𝑘𝑗 ) = 𝑓
(

𝒚e(𝑘𝑗 + 𝑖|𝑘𝑗 ), 𝒖n(𝑘𝑗 + 𝑖|𝑘𝑗 )
)

𝒚e(𝑘𝑗 +𝑁𝑘𝑗 |𝑘𝑗 ) ∈ 𝛺𝛤

(40)

where 𝑖 = 0,… , 𝑁𝑘𝑗 − 1, 𝛺𝛤 =
{

𝒚e ∶ ‖

‖

𝒚e‖‖
2
𝑷 ≤ 𝛤 2

}

, and 𝛤 > 0 is 
terminal region. The terminal constraint serves as a pivotal mechanism 
for ensuring that the end state within the predictive time domain 
accurately enter the predetermined terminal set, thereby providing a 
strong guarantee for the system’s stability. At each triggering time, the 
first constraint condition is employed to obtain the robot’s actual state, 
which is utilized as the initial state for the controller. Subsequently, 
the robot’s subsequent state is accurately predicted through combining 
the control input constraint and the system output (31). This rigorous 
control strategy enables the accurate adjustment of the controller pa-
rameters at each triggering time, ensuring that the robot’s behavior in 
the predictive time domain meets the preset trajectory and performance 
requirements, thereby achieving accurate control of the robot’s motion 
and improving the overall performance and reliability of the system.

The flow of the APST-MPC algorithm for mobile robot is summa-
rized in Algorithm 2.
Algorithm 2 APST-MPC algorithm
Initialize system information, time index 𝑖 = 0;
while Not reach the maximum simulation time of the system do
 Solve the optimization problem (40) at 𝑘𝑗 to obtain the optimal 
control sequence 𝒖∗n(𝑘𝑗 ) and the optimal state 𝒚∗n(𝑘𝑗 );
 if Not reach 𝑘𝑗+1 then;
 Apply the first 𝐼𝑘 control variables in the optimal control 
sequence 𝒖∗n(𝑘𝑗 ) to the nominal system;
 𝑖 = 𝑖 + 1
 Measure the actual state 𝒚n(𝑘𝑗 + 𝑖) and go to step 5;
 else
 Determine the next triggering time 𝑘𝑗+1 from 𝑘𝑗+1 = 𝑘𝑗 + 𝐼𝑘;
 Update the predictive time domain 𝑁𝑘𝑗+1  at the time 𝑘𝑗+1
based on 𝑁𝑘𝑗+1 = 𝑁𝑘𝑗 − 𝑆𝑘;
 end if
 Update the triggering time 𝑘𝑗+1 → 𝑘𝑗 and return to step 1;
end while
The first control variable of 𝒖∗n(𝑘𝑗 ) obtained through the optimiza-

tion problem (40) is the nominal system control variable 𝒖n(𝑘𝑗 ) at time 
𝑘𝑗 , and the actual control variables 𝒖(𝑘) of the mobile robot are derived 
from (20) is 

𝒖(𝑘) = 𝒖∗n(𝑘𝑗 ) − (𝑪𝑩)−1�̂�(𝑘) (41)

4.3. Stability analysis

Theorem 2.  Suppose the mobile robot is governed by 𝒖∗𝑛(𝑘𝑗 + 𝑖|𝑘𝑗 ) at time 
𝑘𝑗 + 𝑖, (34) determines the triggering time, and (38) determines the update 
of the predictive time domain. The robot system is ISS, which ensures that 
the tracking error enters 𝛺  within a bounded time frame.
𝛤

7 
Proof.  Define the Lyapunov function 𝑽 (𝑘𝑗 ) = 𝑱
(

𝒚∗e
(

𝑘𝑗
)

, 𝒖∗e
(

𝑘𝑗
)

, 𝑁𝑘𝑗

)

,
and the difference 𝛥𝑽 𝑗+1 between the time 𝑘𝑗+1 and 𝑘𝑗 is 
𝛥𝑽 𝑗+1 = 𝑽 (𝑘𝑗+1) − 𝑽 (𝑘𝑗 )

= 𝑱
(

𝒚∗e(𝑘𝑗+1), 𝒖
∗
𝑛(𝑘𝑗+1), 𝑁𝑘𝑗+1

)

− 𝑱
(

𝒚∗e(𝑘𝑗 ), 𝒖
∗
𝑛(𝑘𝑗 ), 𝑁𝑘𝑗

)

(42)

According to (33), it can be obtained 

𝛥𝑽 𝑗+1 ≤ −
𝐼𝑘−1
∑

𝑖=0
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

(43)

Assumption  The performance function 𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

,

𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

 is locally Lipschitz continuous, with Lipschitz constant 
𝐿𝑔 . Supposing 𝑮(0, 0) = 0, there exist positive integers 𝑎 > 0, 𝑏 ≥ 1 [43] 
. and can obtain 
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

≥ 𝑎‖
‖

𝒚e(𝑘 + 𝑖|𝑘), 𝒖e(𝑘 + 𝑖|𝑘)‖
‖

𝑏 (44)

From (44)
𝛥𝑽 𝑗+1 ≤ −𝑎‖

‖

𝒚e(𝑘 + 𝑖|𝑘), 𝒖e(𝑘 + 𝑖|𝑘)‖
‖

𝑏 (45)

From this, it can be concluded that 𝛥𝑽 𝑗+1 < 0, therefore the system (30) 
is stable. According to the self-triggered condition (34), it is obtained 
that 

𝛥𝑽 𝑗+1 ≤ −1
𝜂

𝐼𝑘−1
∑

𝑖=0
𝑮
(

𝒚e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
)

, 𝒖e
(

𝑘𝑗 + 𝑖 ||
|

𝑘𝑗
))

(46)

If 𝒚e ∉ 𝛺𝛤 , (46) satisfies 
𝛥𝑽 𝑗+1 ≤ − 𝜆min(𝑄)

𝜂𝜆max(𝑅)
𝛤 2

𝛥𝑽 𝑗 ≤ − 𝜆min(𝑄)
𝜂𝜆max(𝑅)

𝛤 2

⋮

𝛥𝑽 1 ≤ − 𝜆min(𝑄)
𝜂𝜆max(𝑅)

𝛤 2

(47)

By adding the inequalities in (47), we get 

𝑽 (𝑘𝑗+1) ≤ 𝑽 (𝑘0) − 𝑘𝑗+1
𝜆min (𝑄)
𝜂𝜆max (𝑅)

𝛤 2 (48)

From (48), when 𝑗 → ∞, 𝑽 (𝑘𝑗+1) < 0, and the Lyapunov function 
positive definite should be greater than 0. Therefore, the tracking error 
𝒚e can enter 𝛺𝛤  in a finite time. □

Remark 3. Adaptive predictive time domain and self-triggered strate-
gies can adjust the complexity of optimization problems in real time 
according to the system dynamics, thereby achieving more efficient 
computational performance. This contrasts with traditional MPC meth-
ods that typically require constant and possibly excessive computing 
resources. Compared with the resource waste caused by the fixed pre-
dictive time domain in traditional MPC methods, this strategy reduces 
computational load while ensuring control performance by adjusting 
the prediction range and triggering conditions.

Remark 4. It is worth noting that although the ISS properties of 
ESO and APST-MPC are independently established (Theorems  1–2), the 
unified Lyapunov proof of the combined system is still challenging, 
primarily due to the coupling effect between the approximation error 
of the deep Koopman model and the dynamics of the disturbance 
observer. This paper verifies its empirical stability through systematic 
experiments, and future work will explore rigorous joint analysis from 
a theoretical perspective.

5. Experimental validation

In this study, simulation experiments are conducted utilizing the 
Matlab/Simulink platform, aiming to comprehensively validate the 
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Table 2
Hyperparameters in deep Koopman.
 Hyperparameter Value Hyperparameter Value 
 Learning rate 10−4 𝑏𝑠 128  
 𝐿 13 𝑝 43  
 𝛼 1 𝛽 1  
 𝛾 1 𝜇 1  

effectiveness of the deep Koopman operator model and the ESO-APST-
MPC controller. The accuracy of the deep Koopman operator in mod-
eling nonlinear system is quantitatively evaluated by constructing a 
detailed simulation model to simulate the complex working condi-
tions. Concurrently, the simulation experiments for the ESO-APST-MPC 
controller focus on its comprehensive performance, anti-disturbance 
capability, and computational efficiency in trajectory tracking.

5.1. Deep Koopman model validation

Considering that the deep Koopman operator represents a data-
driven approach to modeling, the initial phase involves gathering the 
mobile robot’s operational data. Consequently, this study utilizes a 
trajectory dataset of the mobile robot to train the deep Koopman model. 
Specifically, a corresponding dataset was constructed by simulating the 
dynamic equation of the mobile robot within the Matlab environment. 
In data collection, the sampling period is 0.02 s, and the initial state 
is set to zero. The dataset covers 20,000 state trajectories, with each 
trajectory containing 201 state vectors and 200 control vectors. To 
ensure the validity of the data and model’s capacity for generalization, 
the dataset is partitioned into three segments: a training set, a valida-
tion set, and a testing set, allocated at ratios of 80%, 10%, and 10%, 
respectively. Furthermore, to enhance the diversity of training data, 
this study generates random sampling starting points within the range 
[0, 𝑝], and samples the data sequence from various starting points before 
the commencement of each training cycle. This strategy facilitates the 
model’s exposure to a broader spectrum of data distributions through-
out the training process, thereby enhancing its adaptability to diverse 
operating conditions. In the deep Koopman, the encoder and decoder 
are five-layer structures, denoted as [𝑛 64 128 64 𝐿 − 𝑛

] and 
[

𝐿 128 64 64 𝑛
]

, respectively. Table  2 lists the hyperparameters 
used in the simulation.

During the process where the mobile robot follows a double-shift 
reference trajectory, the simulation compares the local linearization 
method, the Koopman model, and the deep Koopman model to high-
light the effectiveness of the modeling method obtained in this study, 
and sets the same initial state and control input. Figs.  4 and 5 display 
the simulation comparison results for the robot’s state dimension and 
control input under identical control conditions. Fig.  6 presents a 
comparison of errors between the state and control variables and their 
actual values when different modeling methods are employed. The true 
values depicted in the figure are sampled from the test dataset.

The process of deep Koopman operator modeling involves the ap-
plication of deep neural networks, which results in a relatively lengthy 
training cycle. However, this data-driven approach can achieve higher 
modeling accuracy as it can learn more accurate dynamic represen-
tations from complex nonlinear systems. In contrast, the Koopman 
operator modeling method features a shorter training time due to 
its reliance on the least squares solutions. Nevertheless, this method 
typically necessitates the manual design of observable functions, which 
may limit the model’s expressive capability, potentially at the cost of 
some modeling accuracy. When comparing the deep Koopman method 
proposed in this study with both the local linearization method and 
the traditional Koopman method, it is evident that the deep Koopman 
method possesses an advantage in terms of convergence speed. The 
local linearization method is only linearized at 𝒙0, which may lead to 
inadequate modeling accuracy across the global range. In the practical 
8 
Fig. 4. Comparison of heading angle accuracy.

Fig. 5. Comparison of front wheel steering angle accuracy.

Fig. 6. Comparison of modeling error.

applications of the Koopman method, the design of observable function 
often depends on expert knowledge, which may impact the model’s 
generalization capability and accuracy.
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Table 3
RMSE values of state variable.
 Modeling method RMSE 
 Local linearization model 1.65  
 Koopman model 0.44  
 Deep Koopman model 0.12  

The root mean square error (RMSE) reflects the model’s accuracy 
by calculating the square root of the average sum of the squared 
differences between the actual and predicted values, serving as a crucial 
metric for evaluating the model’s accuracy. RMSE is shown in (49). 

RMSE =

√

√

√

√
1
𝑂

𝑂
∑

𝑘=1

(

𝜃 − �̂�
)2 (49)

where 𝑂 is the size of the test set, 𝜃 represents the true value of the 
heading angle, and �̂� represents the predicted value of the heading 
angle. To evaluate the predictive performance of the model and show 
the relative advantages of the deep Koopman model, quantitative anal-
ysis was carried out. RMSE is employed as a quantitative index to 
compare the accuracies of the local linearization model, the Koopman 
model, and the deep Koopman model. Table  3 lists the RMSE values 
corresponding to the state variables under various modeling methods 
in Fig.  4.

The tabulated numerical outcomes in Table  3 demonstrate that the 
RMSE of the heading angle modeled by the deep Koopman method 
proposed in this study is the lowest among all the compared methods. 
Both the Koopman model and the deep Koopman model exhibit good 
prediction accuracy. Specifically, the Koopman model shows an im-
provement of 73.33% over the local linearization model, while the deep 
Koopman model demonstrates an improvement of 92.73% compared to 
the local linearization model.

5.2. Controller validation

To demonstrate the effectiveness of ESO-APST-MPC controller, sim-
ulations were conducted to assess its disturbance estimation capability 
and trajectory tracking ability under various reference trajectories. Set 
the sampling period to 0.05 s, the initial predictive time domain to 
𝑁0 = 25, and the weight coefficients of the objective function to 
𝝉1 = diag(0.6,0.6,1), 𝝉2 = diag(0.5,0.5), 𝝉3 = diag(0.6,0.6, 0.6).

When the tracking simulations are conducted under both circular 
and double-shift conditions, the robot is set to operate from (0,0). 
To demonstrate the advantages of the APST-MPC controller designed 
in this study, the tracking effects of APST-MPC and standard MPC 
controllers are compared through simulation methods under various 
working conditions. The trajectory tracking results are depicted in Figs. 
7 and 8, while the control inputs and states are presented in Figs.  9 and
10.

Fig.  7 emerges the performance comparison of the mobile robot 
tracking circular reference trajectory, demonstrating that the APST-
MPC method more closely tracks the reference trajectory, demonstrat-
ing superior tracking accuracy. Fig.  9 further illustrates the control 
input and state errors during the circular trajectory tracking process, 
and the results indicate that the tracking errors gradually approaches 
zero, with the APST-MPC method exhibiting smoother control inputs 
and smaller tracking errors, which verifies its advantages in reducing 
control input fluctuations and enhancing tracking accuracy. Fig.  8 
compares the performance of the mobile robot in double-shift trajectory 
tracking, showing that the APST-MPC method also achieves higher 
tracking accuracy, particularly in areas where the trajectory changes 
rapidly. Fig.  10 further provides the control input and states during 
the double-shift trajectory tracking process, showing that the APST-
MPC method offers smoother control input and tracking errors that are 
consistently lower than those of the MPC method, further confirming its 
9 
Fig. 7. Comparison of heading angle accuracy.

Fig. 8. Comparison of front wheel steering angle accuracy.

effectiveness in improving the trajectory tracking control performance. 
In summary, the simulation results indicate that the APST-MPC method 
exhibits enhanced tracking accuracy and better control performance in 
the trajectory tracking control of mobile robot, effectively enhancing 
the execution capability of mobile robot in complex trajectory tracking 
tasks.

The minimum triggering interval time 𝜀 affects the triggering fre-
quency and tracking performance. A larger 𝜀 can reduce the update 
frequency of the predictive time domain and the solution frequency of 
the optimization problem, but at the expense of tracking performance. 
Conversely, a smaller 𝜀 can ensure better control performance, but at 
the cost of a high solution frequency for the optimization problem and 
a slower change of the predictive time domain. For this reason, this 
simulation sets the parameter 𝜀 to 0.3, 0.6 and 0.9 to observe the 
effects on the triggering interval time and the predictive time domain, 
respectively. Fig.  11 records the triggering times and predictive time 
domain for the MPC method and the APST-MPC method under different 
parameter settings.

Fig.  11 illustrates that as 𝜀 increases, the triggering interval time 
also increases and tends to sample uniformly as 𝜀 approaches 0. The 
distribution of triggering times is relatively sparse at the beginning and 
as the objective function decreases, the distribution of triggering times 
becomes dense. This occurs because when the objective function is 
relatively large, more performance loss can be tolerated. Conversely, as 
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Fig. 9. Comparison of heading angle accuracy.

Fig. 10. Comparison of front wheel steering angle accuracy.

the objective function approaches zero, less performance loss is permis-
sible, leading to an increase in triggering frequency. Since the sampling 
of the APST-MPC method is non-periodic and the sampling frequency 
is significantly reduced compared to periodic sampling, which reduces 
the number of times optimization problems need to be solved. Concur-
rently, the predictive time domain is shortened over time, and as the 
system state gradually approaches the terminal region, the dimension 
of the optimization problem is continuously reduced at each step, 
10 
Fig. 11. Triggering time and predictive time domain.

Fig. 12. Objective function.

Table 4
Total optimization times for different control methods.
 Control method Total optimization time/(ms) 
 MPC 31986  
 APST-MPC 𝜀 = 0.3 2885  
 APST-MPC 𝜀 = 0.6 1808  
 APST-MPC 𝜀 = 0.9 1580  

which not only alleviates the computational load across the entire time 
domain but also reduces the complexity during each iteration update.

Fig.  12 illustrates the upper bounds of the objective function un-
der various parameter settings. It is evident from the figure that the 
APST-MPC method proposed in this paper satisfies the suboptimal 
performance, but reflects that increasing the value of 𝜀 within this 
method may reduce the control performance.

To assess the computational complexity of the optimization problem 
at each step, the optimization time for each step is determined through 
simulation. Fig.  13 presents the optimization times for the optimization 
problem under various control methods, while Table  4 tabulates the 
total optimization times for these different methods.

Fig.  13 demonstrates that the optimization time for each step of the 
APST-MPC method decreases over time relative to the MPC method, 
indicating a reduction in the computational complexity per step. The 
data presented in Table  4 underscore the effectiveness of APST-MPC 
concerning reducing computational complexity.
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Fig. 13. Optimization times.

To verify the estimation accuracy of the ESO, random disturbances 
are introduced to the robot at 𝑡 = 0 s, and the disturbance value changed 
abruptly at 𝑡 = 9 s to simulate the attack behavior encountered by the 
mobile robots during trajectory tracking. Figs.  14 and 15 present the 
circular and double-shift tracking trajectories of the mobile robot sys-
tem under the control of APST-MPC and ESO-APST-MPC, respectively. 
Fig.  16 displays the true disturbance values alongside the estimated 
obtained by the ESO.

Fig.  14 illustrates the tracking of a circular trajectory by the mobile 
robot under disturbance conditions, and the results indicate that the 
ESO-APST-MPC method can more closely follow the reference trajec-
tory under these conditions, demonstrating superior tracking accuracy 
and robustness. Fig.  15 presents the tracking accuracy of the mobile 
robot on the double-shift trajectory under disturbance conditions, and 
the results indicate that the ESO-APST-MPC method also exhibits higher 
tracking accuracy in double-shift trajectory tracking, particularly in 
areas where the trajectory changes rapidly, effectively reducing track-
ing error and improving trajectory tracking accuracy. Figs.  14 and
15 reflect that the ESO-APST-MPC method can adjust the attitude 
faster to track the reference trajectory with smaller tracking error 
after the mobile robot is subjected to simulated attack under the two 
reference trajectories. Fig.  16 compares the true disturbance value 
with the estimated value obtained by the ESO. The results indicate 
that the ESO can effectively estimate disturbances in real-time, with 
a small error between the estimated and true values, thus verifying 
the effectiveness and accuracy of the ESO in disturbance observation. 
To summarize, when there are external disturbances, the ESO-APST-
MPC approach can significantly enhance the mobile robot’s trajectory 
tracking performance, demonstrating superior accuracy and robust dis-
turbance rejection capabilities, while maintaining its own stability. 
This method provides an effective control strategy for high accuracy 
trajectory tracking of the mobile robot in complex environments.

5.3. Experimental analysis

To substantiate the actual control capability of the controller de-
signed in this study, the robot platform depicted in Fig.  17 was se-
lected for the experiments. The mobile robot platform is equipped with 
cameras, LiDAR, ultrasonic sensors, and Wi-Fi modules. In practical 
applications, mobile robots may need to perform tasks involving mul-
tiple directional changes, sometimes requiring sharp turns, which puts 
higher demands on the robot’s dynamic response and control accuracy. 
Therefore, circular trajectory, double-shift trajectory, and square trajec-
tory containing multiple directional changes and angles were selected 
for testing in the experiment. The controller parameter settings were 
11 
Fig. 14. Circular tracking trajectory with disturbances.

Fig. 15. Double-shift tracking trajectory with disturbances.

Fig. 16. The true value and the estimated value of the disturbances.
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Fig. 17. Robot formatfrei.
Fig. 18. Experimental circular trajectory.
Fig. 19. Experimental double-shift trajectory.
consistent with those used in the numerical simulation experiments. 
The mass of the wheeled mobile robot applied in the experiments 
is approximately 110 kg, with a maximum speed of 1.5 m/s and a 
minimum turning radius of 0 m.

The experimental results are presented in Figs.  18–20, which respec-
tively depict the trajectory tracking effects and tracking errors of the 
mobile robot in the 𝑋-axis and 𝑌 -axis directions under various tracking 
trajectories. The maximum tracking errors of the robot after tracking 
the reference trajectory are provided in Table  5.

Figs.  18–20 show the tracking circular, double-shift, and square 
trajectory figures, as well as tracking error comparison figures. It can be 
12 
observed from these figures and Table  5 that the controller proposed in 
this study exhibits smaller errors compared to the MPC controller. This 
is because ESO can effectively estimate disturbances affecting the robot, 
ensuring tracking accuracy while reducing the sampling frequency, 
shortening the predictive time domain, and decreasing the computa-
tional complexity of the optimization problem. This demonstrates that 
the control approach proposed in this study possesses superior anti-
disturbance and trajectory tracking capabilities. Fig.  20 adopts square 
trajectory that is not covered by the training set. By comparing the 
tracking errors under trajectory outside the training data distribution, 
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Fig. 20. Experimental square trajectory.
Table 5
Maximum tracking errors.
 Control method Circular trajectory Double-shift trajectory Square trajectory
 |

|

𝑥e|| maximum
value

|

|

𝑦e|| maximum
value

|

|

𝑥e|| maximum
value

|

|

𝑦e|| maximum
value

|

|

𝑥e|| maximum
value

|

|

𝑦e|| maximum
value

 

 MPC 0.1354 0.1991 0.1339 0.1775 0.1349 0.1508  
 ESO-APST-MPC 0.0333 0.0724 0.0251 0.0958 0.0602 0.0914  
it shows that the combined system still has practical stability even if 
there is model mismatch.

6. Conclusion

In this study, the trajectory tracking control problem for wheeled 
mobile robot was addressed, an MPC approach employing deep Koop-
man operator modeling was put forth to facilitate accurate and swift 
tracking of the reference trajectory. During the modeling process, the 
data-driven deep Koopman operator theory was employed to globally 
describe the dynamic properties of the robot system, and a robot’s 
high-dimensional linear model was constructed. In the process of dis-
turbance estimation, ESO was applied to estimate and compensate for 
operational disturbances affecting the output of the controller, thus 
reducing the impact of disturbances on the effect of the robot’s tra-
jectory tracking control and enhancing the system’s robustness. In the 
controller design process, the APST-MPC method was utilized to reduce 
the dimension and frequency of solving the optimization problem, 
thereby decreasing the computational burden of the controller while 
ensuring the robot’s tracking accuracy. Finally, a Matlab/Simulink 
simulation model was constructed to explore in depth the advantages of 
the deep Koopman operator in high accuracy modeling and the pivotal 
role of the ESO-APST-MPC controller in achieving efficient trajectory 
tracking control. The experimental findings verified that the proposed 
approach met the expected goals concerning modeling accuracy and 
control performance. The accurate system model in high-dimensional 
linear space constructed by the deep Koopman operator enhanced 
the real-time performance of the APST-MPC controller, improved the 
prediction accuracy of the model, and strengthened the adaptive ability 
and robustness of the system. It provided an efficient and accurate 
solution for mobile robot’s trajectory tracking control within intricate 
settings.

This study validated the engineering feasibility of the modular, data-
driven system through experiments, but did not provide a rigorous 
stability proof for the combination. Future work will explore rigorous 
joint analysis in theory. In addition, combining data-driven modeling 
methods with advanced control strategies can further improve accuracy 
and efficiency. And extend the method to various types and scenarios 
of robots, and conduct physical platform testing to ensure practical 
13 
feasibility and effectiveness. The goal is to make mobile robots more 
reliable and autonomous in complex environments, expanding their 
application scope.
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